Extensions 1→N→G→Q→1 with N=(S32)⋊C4 and Q=C2

Direct product G=N×Q with N=(S32)⋊C4 and Q=C2
dρLabelID
C2×(S32)⋊C424C2x(S3^2):C4288,880

Semidirect products G=N:Q with N=(S32)⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S32)⋊C41C2 = C4.4S3≀C2φ: C2/C1C2 ⊆ Out (S32)⋊C4248+(S3^2):C4:1C2288,869
(S32)⋊C42C2 = D6≀C2φ: C2/C1C2 ⊆ Out (S32)⋊C4124+(S3^2):C4:2C2288,889
(S32)⋊C43C2 = C62⋊D4φ: C2/C1C2 ⊆ Out (S32)⋊C4248+(S3^2):C4:3C2288,890
(S32)⋊C44C2 = C4⋊S3≀C2φ: C2/C1C2 ⊆ Out (S32)⋊C4244(S3^2):C4:4C2288,878
(S32)⋊C45C2 = C62.9D4φ: C2/C1C2 ⊆ Out (S32)⋊C4244(S3^2):C4:5C2288,881
(S32)⋊C46C2 = C4×S3≀C2φ: trivial image244(S3^2):C4:6C2288,877

Non-split extensions G=N.Q with N=(S32)⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(S32)⋊C4.C2 = (S32)⋊Q8φ: C2/C1C2 ⊆ Out (S32)⋊C4244(S3^2):C4.C2288,868

׿
×
𝔽